Bin Han, Ph.D, Professor, academician of Chinese Academy of Sciences(2013), Director of NCGR. He is the director of Shanghai Institute of Plant Physiology and Ecology, CAS, and the director of the CAS Center for Excellence in Molecular Plant Sciences. He is also the co-editor of Molecular Plant, the academic advisor of John Innes Center in the UK and the vice chairman of the Chinese Society of Genetics.
Professor Bin Han was born in 1963, AnHui, China. He obtained his bachelor degree in Biology from Anhui Normal University, in 1985, master degree in Biology from Guangxi Agricultural College, in 1988, and Ph.D degree in Molecular Genetics from the British John Innes Centre, in 1992. Between 1992 and 1998, he joined the University of Cambridge, Plant Science Department, as a post doctor. In 1998, he came back to China and serves as a director of the National Center for Gene Research, CAS. From 2002 on, he also serves as a vice director of Institute of Plant Physiology & Ecology, Shanghai Institutes for Biological Sciences, CAS. In 2008, he was appointed as the vice director of Beijing Institute of Genomics, CAS. He was elected a Member of the Chinese Academy of Sciences (CAS) in 2013.
Prof. Han has been working on 1) genome sequencing and transcriptome studies, 2) sequencing-based genotyping and GWAS, 3) domestication studies, and 4) heterosis studies, using rice as crop of interest. He has achieved great success in all these fields. His lab has firstly finished rice chromosome 4 sequence. By using next-generation sequencing technology, he performed high-resolution genotyping, data imputation and whole genome sequencing-based GWA study, and succeeded to identify a substantial number of quantitative trait loci potentially important for rice production and improvement. Furthermore, by extending this technology into the construction of the rice genome-variation map, he unlocked the origin and domesticated process of Asian cultivated rice. The genetic mechanism of heterosis in crops has long been a puzzle despite the fact that heterosis had been discovered more than a century ago and that various genetic models have already been proposed to explain it. By using the same forward genetic and genomic approaches, Han’s group performed large-scale genomic mapping for yield-related traits and heterotic effects in thousands of hybrid rice varieties, and characterized the genomic architecture of heterosis for yield traits in rice, which succeeded to reveal the mechanism behind this biologically and agronomically important phenomenon. Very recently, his lab has demonstrated the extent of genomic variations among rice complex through a rice pan-genome study. These works are among the most notable epoch-making achievements in rice genome research since the elucidation of the whole genome sequence of rice, and he has actually published many papers dealing with these topics in top journals, including Nature, Nature Genetics, Nature Communications, Genome Research, and Plant Cell.
1、Wang, Q., Tang, J., Han, B., & Huang, X. (2020). Advances in genome-wide association studies of complex traits in rice. Theoretical and Applied Genetics, 133(5), 1415–1425. https://doi.org/10.1007/s00122-019-03473-3 (cites=1)
2、Liu, Y., Du, H., Li, P., Shen, Y., Peng, H., Liu, S., Zhou, G. A., Zhang, H., Liu, Z., Shi, M., Huang, X., Li, Y., Zhang, M., Wang, Z., Zhu, B., Han, B., Liang, C., & Tian, Z. (2020). Pan-Genome of Wild and Cultivated Soybeans. Cell, 182(1), 162-176.e13. https://doi.org/10.1016/j.cell.2020.05.023 (cites=3)
3、Liu, H., Wang, Q., Chen, M., Ding, Y., Yang, X., Liu, J., Li, X., Zhou, C., Tian, Q., Lu, Y., Fan, D., Shi, J., Zhang, L., Kang, C., Sun, M., Li, F., Wu, Y.,Zhang, Y., Liu, B., Zhao, X., Feng, Q., Yang, J., Han, B., Lai, J., Zhang, X., & Huang, X. (2020). Genome-wide identification and analysis of heterotic loci in three maize hybrids. Plant Biotechnology Journal, 18(1), 185–194. https://doi.org/10.1111/pbi.13186 (cites=2)
4、Chen, E., Huang, X., Tian, Z., Wing, R. A., & Han, B*. (2019). The Genomics of Oryza Species Provides Insights into Rice Domestication and Heterosis. Annual Review of Plant Biology, 70, 639–665. https://doi.org/10.1146/annurev-arplant-050718-100320 (cites=4)
5、Wang, C., Tang, S., Zhan, Q., Hou, Q., Zhao, Y., Zhao, Q., Feng, Q., Zhou, C., Lyu, D., Cui, L., Li, Y., Miao, J., Zhu, C., Lu, Y., Wang, Y., Wang, Z., Zhu, J., Shangguan, Y., Gong, J., Yang, S., Wang, W., Zhang, J., Xie, H., Huang, X*., & Han, B*. (2019). Dissecting a heterotic gene through GradedPool-Seq mapping informs a rice-improvement strategy. Nature Communications, 10(1). https://doi.org/10.1038/s41467-019-11017-y (cites=6)
6、Wang, A., Hou, Q., Si, L., Huang, X., Luo, J., Lu, D., Zhu, J., Shangguan, Y., Miao, J., Xie, Y., Wang, Y., Zhao, Q., Feng, Q., Zhou, C., Li, Y., Fan, D., Lu, Y., Tian, Q., Wang, Z., & Han, B*. (2019). The PLATZ transcription factor GL6 affects grain length and number in rice. Plant Physiology, 180(4), 2077–2090. https://doi.org/10.1104/pp.18.01574 (cites=6)
7、Fang, J., Zhang, F., Wang, H., Wang, W., Zhao, F., Li, Z., Sun, C., Chen, F., Xu, F., Chang, S., Wu, L., Bu, Q., Wang, P., Xie, J., Chen, F., Huang, X., Zhang, Y., Zhu, X., Han, B., Deng, X., & Chu, C. (2019). Ef-cd locus shortens rice maturity duration without yield penalty. Proceedings of the National Academy of Sciences of the United States of America, 116(37), 18717–18722. https://doi.org/10.1073/pnas.1815030116 (cites=4)
8、Chen, K., Guo, T., Li, X. M., Zhang, Y. M., Yang, Y. B., Ye, W. W., Dong, N. Q., Shi, C. L., Kan, Y., Xiang, Y. H., Zhang, H., Li, Y. C., Gao, J. P., Huang, X., Zhao, Q., Han, B., Shan, J. X., & Lin, H. X. (2019). Translational Regulation of Plant Response to High Temperature by a Dual-Function tRNAHis Guanylyltransferase in Rice. Molecular Plant, 12(8), 1123–1142. https://doi.org/10.1016/j.molp.2019.04.012 (cites=3)
9、Liu, M., Zhao, Q., Qi, F., Stiller, J., Tang, S., Miao, J., Vrána, J., Holušová, K., Liu, D., Doležel, J., Manners, J. M., Han, B*., & Liu, C*. (2018). Sequence divergence between spelt and common wheat. Theoretical and Applied Genetics, 131(5), 1125–1132. https://doi.org/10.1007/s00122-018-3064-z (cites=1)
10、Zhao, Q., Feng, Q., Lu, H., Li, Y., Wang, A., Tian, Q., Zhan, Q., Lu, Y., Zhang, L., Huang, T., Wang, Y., Fan, D., Zhao, Y., Wang, Z., Zhou, C., Chen, J., Zhu, C., Li, W., Weng, Q., Xu, Q., Wang, Z., Wei, X., Han B., & Huang, X. (2018). Pan-genome analysis highlights the extent of genomic variation in cultivated and wild rice. Nature Genetics, 50(2), 278–284. https://doi.org/10.1038/s41588-018-0041-z (cites=98)
11、Stein, J. C., Yu, Y., Copetti, D., Zwickl, D. J., Zhang, L., Zhang, C., Chougule, K., Gao, D., Iwata, A., Goicoechea, J. L., Wei, S., Wang, J., Liao, Y., Wang, M., Jacquemin, J., Becker, C., Kudrna, D., Zhang, J., Londono, C.E.M., Song, X., Lee, S., Sanchez, P., Zuccolo, A., Ammiraju, J.S.S., Talag, J., Danowitz, A., Rivera, L.F., Gschwend, A.R., Noutsos, C., Wu, C.C., Kao, S.M., Zeng, J.W., Wei, F.J., Zhao, Q., Feng, Q., El Baidouri, M., Carpentier, M.C., Lasserre, E., Cooke, R., Rosa Farias, D.D., da Maia, L.C., Dos Santos, R.S., Nyberg, K.G., McNally, K.L., Mauleon, R., Alexandrov, N., Schmutz, J., Flowers, D., Fan, C., Weigel, D., Jena, K.K., Wicker, T., Chen, M., Han, B., Henry, R., Hsing, Y. C., Kurata, N., Oliveira A. C., Panaud, O., Jackson, S. A., Machado, C. A., Sanderson, M. J., Long, M., Ware, D., & Wing, R. A. (2018). Genomes of 13 domesticated and wild rice relatives highlight genetic conservation, turnover and innovation across the genus Oryza. Nature Genetics, 50(2), 285–296. https://doi.org/10.1038/s41588-018-0040-0 (cites=99)
12、Li, Y., Xiao, J., Chen, L., Huang, X., Cheng, Z., Han, B., Zhang, Q., & Wu, C. (2018). Rice Functional Genomics Research: Past Decade and Future. Molecular Plant, 11(3), 359–380. https://doi.org/10.1016/j.molp.2018.01.007 (cites=30)
13、Luo, J. S., Huang, J., Zeng, D. L., Peng, J. S., Zhang, G. Bin, Ma, H. L., Guan, Y., Yi, H. Y., Fu, Y. L., Han, B., Lin, H. X., Qian, Q., & Gong, J. M. (2018). A defensin-like protein drives cadmium efflux and allocation in rice. Nature Communications, 9(1). https://doi.org/10.1038/s41467-018-03088-0 (cites=56)
14、Gong, J., Miao, J., Zhao, Y., Zhao, Q., Feng, Q., Zhan, Q., Cheng, B., Xia, J., Huang, X*., Yang, S*., & Han, B*. (2017). Dissecting the Genetic Basis of Grain Shape and Chalkiness Traits in Hybrid Rice Using Multiple Collaborative Populations. Molecular Plant, 10(10), 1353–1356. https://doi.org/10.1016/j.molp.2017.07.014 (cites=8)
15、Zhang, L., Yu, H., Ma, B., Liu, G., Wang, J., Wang, J., Gao, R., Li, J., Liu, J., Xu, J., Zhang, Y., Li, Q., Huang, X., Xu, J., Li, J., Qian, Q., Han, B., He, Z., & Li, J. (2017). A natural tandem array alleviates epigenetic repression of IPA1 and leads to superior yielding rice. Nature Communications, 8. https://doi.org/10.1038/ncomms14789 (cites=44)
16、Fang, L., Gong, H., Hu, Y., Liu, C., Zhou, B., Huang, T., Wang, Y., Chen, S., Fang, D. D., Du, X., Chen, H., Chen, J., Wang, S., Wang, Q., Wan, Q., Liu, B., Pan, M., Chang, L., Wu, H., Mei, G., Xiang, D., Li, X., Cai, C., Zhu, X., Chen, Z.J. Han, B., Chen, X., Guo, W., Zhang, T., & Huang, X. (2017). Genomic insights into divergence and dual domestication of cultivated allotetraploid cottons. Genome Biology, 18(1), 1–13. https://doi.org/10.1186/s13059-017-1167-5 (cites=40)
17、Huang, X*., Yang, S., Gong, J., Zhao, Q., Feng, Q., Zhan, Q., Zhao, Y., Li, W., Cheng, B., Xia, J., Chen, N., Huang, T., Zhang, L., Fan, D., Chen, J., Zhou, C., Lu, Y., Weng, Q., Han, B*. (2016). Genomic architecture of heterosis for yield traits in rice. Nature, 537(7622), 629–633. https://doi.org/10.1038/nature19760 (cites=102)
18、Si, L., Chen, J., Huang, X., Gong, H., Luo, J., Hou, Q., Zhou, T., Lu, T., Zhu, J., Shangguan, Y., Chen, E., Gong, C., Zhao, Q., Jing, Y., Zhao, Y., Li, Y., Cui, L., Fan, D., Lu, Y., Weng, Q., Wang, Y., Zhan, Q., Liu, K., Wei, X., An, K., An, G., & Han, B*. (2016). OsSPL13 controls grain size in cultivated rice. Nature Genetics, 48(4), 447–456. https://doi.org/10.1038/ng.3518 (cites=226)
19、Han, B*. (2016). Genomics:Decoding the ancestors of peanut. Nature Plants, 2(4), 1–2. https://doi.org/10.1038/NPLANTS.2016.42 (cites=1)
20、Chen, E., Huang, X*., & Han, B*. (2016). How can rice genetics benefit from rice-domestication study? Natl Sci Rev, 3(3), 278–280. https://doi.org/10.1093/nsr/nww039 (cites=2)
21、Ohyanagi, H., Ebata, T., Huang, X., Gong, H., Fujita, M., Mochizuki, T., Toyoda, A., Fujiyama, A., Kaminuma, E., Nakamura, Y., Feng, Q., Wang, Z. X., Han, B., & Kurata, N. (2016). OryzaGenome: Genome diversity database of wild oryza species. Plant and Cell Physiology, 57(1), e1. https://doi.org/10.1093/pcp/pcv171 (cites=14)
22、Huang, X., Yang, S., Gong, J., Zhao, Y., Feng, Q., Gong, H., Li, W., Zhan, Q., Cheng, B., Xia, J., Chen, N., Hao, Z., Liu, K., Zhu, C., Huang, T., Zhao, Q., Zhang, L., Fan, D., Zhou, C., Lu, Y., Weng, Q., Wang, Z., Li, J., Han, B*. (2015). Genomic analysis of hybrid rice varieties reveals numerous superior alleles that contribute to heterosis. Nature Communications, 6. https://doi.org/10.1038/ncomms7258 (cites=118)
23、Wang, Y*., Lu, Y., Zhang, Y., Ning, Z., Li, Y., Zhao, Q., Lu, H., Huang, R., Xia, X., Feng, Q., Liang, X., Liu, K., Zhang, L., Lu, T., Huang, T., Fan, D., Weng, Q., Zhu, C., Lu, Y., Li, Wen., Wen, Z., Zhou, C., Tian, Q., Kang, X., Shi, M., Zhang, W., Jang, S., Du, F., He, S., Liao, L., Li, Y., Gui, B., He, H., Ning, Z., Yang, C., He, L., Luo, L., Yang, R., Luo, Q., Liu, X., Li, S., Huang, W., Xiao, L., Lin, H*., Han, B*., Zhu, Z*. (2015). The draft genome of the grass carp (Ctenopharyngodon idellus) provides insights into its evolution and vegetarian adaptation. Nature Genetics, 47(6), 625–631. https://doi.org/10.1038/ng.3280 (cites=165)
24、Huang, X*., & Han, B*. (2015). Rice domestication occurred through single origin and multiple introgressions. Nature Plants, 2(1), 1. https://doi.org/10.1038/nplants.2015.207 (cites=17)
25、Lu, T*., Cui, L., Zhou, Y., Zhu, C., Fan, D., Gong, H., Zhao, Q., Zhou, C., Zhao, Y., Lu, D., Luo, J., Wang, Y., Tian, Q., Feng, Q., Huang, T., & Han, B*. (2015). Transcriptome-wide investigation of circular RNAs in rice. RNA, 21(12), 2076–2087. https://doi.org/10.1261/rna.052282.115 (cites=162)
26、Gu, B., Zhou, T., Luo, J., Liu, H., Wang, Y., Shangguan, Y., Zhu, J., Li, Y., Sang, T., Wang, Z., & Han, B*. (2015). An-2 Encodes a Cytokinin Synthesis Enzyme that Regulates Awn Length and Grain Production in Rice. Molecular Plant, 8(11), 1635–1650. https://doi.org/10.1016/j.molp.2015.08.001 (cites=40)
27、Li, X. M., Chao, D. Y., Wu, Y., Huang, X., Chen, K., Cui, L. G., Su, L., Ye, W. W., Chen, H., Chen, H. C., Dong, N. Q., Guo, T., Shi, M., Feng, Q., Zhang, P., Han, B., Shan, J., Gao, J., Lin, H. X. (2015). Natural alleles of a proteasome α2 subunit gene contribute to thermotolerance and adaptation of African rice. Nature Genetics, 47(7), 827–833. https://doi.org/10.1038/ng.3305 (cites=77)
28、Huang, X., Zhao, Q., & Han, B. (2015). Comparative population genomics reveals strong divergence and infrequent introgression between Asian and African rice. Molecular Plant, 8(6), 958–960. https://doi.org/10.1016/j.molp.2015.01.010 (cites=7)
29、Wei, X., Liu, K., Zhang, Y., Feng, Q., Wang, L., Zhao, Y., Li, D., Zhao, Q., Zhu, X., Zhu, X., Li, W., Fan, D., Gao, Y., Lu, Y., Zhang, X., Tang, X., Zhou, C., Zhu, C., Liu, L., Zhong, R., Tian, Q., Wen, Z., Weng, Q., Han, B., Huang, X., Zhang, X. (2015). Genetic discovery for oil production and quality in sesame. Nature Communications, 6(May). https://doi.org/10.1038/ncomms9609 (cites=60)
30、Huang, X*., & Han, B*. (2014). Natural variations and genome-wide association studies in crop plants. Annual Review of Plant Biology, 65, 531–551. https://doi.org/10.1146/annurev-arplant-050213-035715 (cites=231)
31、Chen, C., Chen, H., Lin, Y. S., Shen, J. B., Shan, J. X., Qi, P., Shi, M., Zhu, M. Z., Huang, X. H., Feng, Q., Han, B., Jiang, L., Gao, J. P., & Lin, H. X. (2014). A two-locus interaction causes interspecific hybrid weakness in rice. Nature Communications, 5, 3357. https://doi.org/10.1038/ncomms4357 (cites=32)
32、Jia, G., Huang, X., Zhi, H., Zhao, Y., Zhao, Q., Li, W., Chai, Y., Yang, L., Liu, K., Lu, H., Zhu, C., Lu, Y., Zhou, C., Fan, D., Weng, Q., Guo, Y., Huang, T., Zhang, L., Lu, T., Feng, Q., Hao, H., Liu, H., Lu, P., Zhang, N., Li, Y., Guo, E., Wang, S., Wang, S., Liu, J., Zhang, W., Chen, G., Zhang, B., Li, W., Wang, Y., Li, H., Zhao, B., Li, J*., Diao, X*., & Han, B*. (2013). A haplotype map of genomic variations and genome-wide association studies of agronomic traits in foxtail millet (Setaria italica). Nature Genetics, 45(8), 957–961. https://doi.org/10.1038/ng.2673 (cites=177)
33、Luo, J., Liu, H., Zhou, T., Gu, B., Huang, X., Shangguan, Y., Zhu, J., Li, Y., Zhao, Y., Wang, Y., Zhao, Q., Wang, A., Wang, Z., Sang, T., Wang, Z., & Han, B*. (2013). An-1 encodes a basic helix-loop-helix protein that regulates awn development, grain size, and grain number in rice. Plant Cell, 25(9), 3360–3376. https://doi.org/10.1105/tpc.113.113589 (cites=86)
34、Peng, Z., Lu, Y., Li, L., Zhao, Q., Feng, Q., Gao, Z., Lu, H., Hu, T., Yao, N., Liu, K., Li, Y., Fan, D., Guo, Y., Li, W., Lu, Y., Weng, Q., Zhou, C., Zhu, C., Liu, X., Yang, X., Wang, T., Miao, K., Zhuang, C., Cao, X., Tang, W., Liu, G., Liu, Y., Chen, J., Liu, Z., Yuan, L., Liu, Z., Huang, X., Lu, T., Fei, B., Ning, Z., Han, B*., Jiang, Z*. (2013). The draft genome of the fast-growing non-timber forest species moso bamboo (Phyllostachys heterocycla). Nature Genetics, 45(4), 456–461. https://doi.org/10.1038/ng.2569 (cites=219)
35、Han, B*., & Huang, X*. (2013). Sequencing-based genome-wide association study in rice. Current Opinion in Plant Biology, 16(2), 133–138. https://doi.org/10.1016/j.pbi.2013.03.006 (cites=47)
36、Huang, X., Lu, T., & Han, B*. (2013). Resequencing rice genomes: An emerging new era of rice genomics. Trends in Genetics, 29(4), 225–232. https://doi.org/10.1016/j.tig.2012.12.001 (cites=54)
37、Liu, X., Shangguan, Y., Zhu, J., Lu, Y., & Han, B*. (2013). The rice OsLTP6 gene promoter directs anther-specific expression by a combination of positive and negative regulatory elements. Planta, 238(5), 845–857. https://doi.org/10.1007/s00425-013-1934-9 (cites=18)
38、Li, S., Yan, S., Wang, A. hong, Zou, G., Huang, X., Han, B., Qian, Q., & Tao, Y. (2013). Identification of QTLs associated with tissue culture response through sequencing-based genotyping of RILs derived from 93-11 × Nipponbare in rice (Oryza sativa). Plant Cell Reports, 32(1), 103–116. https://doi.org/10.1007/s00299-012-1345-6 (cites=9)
39、Huang, X., Kurata, N., Wei, X., Wang, Z-X., Wang, A., Zhao, Q., Zhao, Y., Liu, K., Lu, H., L,i W., Guo, Y., Lu, Y., Zhou, C., Fan, D., Weng, Q., Zhu, C., Huang, T., Zhang, L., Wang, Y., Feng, L., Furuumi, H., Kubo, T., Miyabayashi, T., Yuan, X., Xu, Q., Dong, G., Zhan, Q., Li, C., Fujiyama, A., Toyoda, A., Lu, T., Feng, Q., Qian, Q., Li, J., Han, B*. (2012). A map of rice genome variation reveals the origin of cultivated rice. Nature, 490(7421), 497–501. https://doi.org/10.1038/nature11532 (cites=677)
40、Huang, X., Zhao, Y., Wei, X., Li, C., Wang, A., Zhao, Q., Li, W., Guo, Y., Deng, L., Zhu, C., Fan, D., Lu, Y., Weng, Q., Liu, K., Zhou, T., Jing, Y., Si, L., Dong, G., Huang, T., Lu, T., Feng, Q., Qian, Q., Li, J., Han, B*. (2012). Genome-wide association study of flowering time and grain yield traits in a worldwide collection of rice germplasm. Nature Genetics, 44(1), 32–39. https://doi.org/10.1038/ng.1018 (cites=506)
41、Huang, X*., & Han, B*. (2012). A crop of maize variants. Nature Genetics, 44(7), 734–735. https://doi.org/10.1038/ng.2326 (cites=10)
42、Zou, G., Zhai, G., Feng, Q., Yan, S., Wang, A., Zhao, Q., Shao, J., Zhang, Z., Zou, J., Han, B*., Tao, Y*. (2012). Identification of QTLs for eight agronomically important traits using an ultra-high-density map based on SNPs generatd from high-throughput sequencing in sorghum under contrasting photoperiods. J. EXP. BOT. 63, 5451-5462. https://doi.org/10.1093/jxb/ers205 (cites=86)
43、Zong, G., Wang, A., Wang, L., Liang, G., Gu, M., Sang, T., & Han, B*. (2012). A Pyramid Breeding of Eight Grain-yield Related Quantitative Trait Loci Based on Marker-assistant and Phenotype Selection in Rice (Oryza sativa L.). Journal of Genetics and Genomics, 39(7), 335–350. https://doi.org/10.1016/j.jgg.2012.06.004 (cites=12)
44、Lu, T*., Zhu, C., Lu, G., Guo, Y., Zhou, Y., Zhang, Z., Zhao, Y., Li, W., Lu, Y., Tang, W., Feng, Q., & Han, B*. (2012). Strand-specific RNA-seq reveals widespread occurrence of novel cis-natural antisense transcripts in rice. BMC Genomics, 13(1), 1. https://doi.org/10.1186/1471-2164-13-721 (cites=48)
45、Zhou, Y., Lu, D., Li, C., Luo, J., Zhu, B. F., Zhu, J., Shangguan, Y., Wang, Z., Sang, T., Zhou, B., & Han, B*. (2012). Genetic control of seed shattering in rice by the APETALA2 transcription factor Shattering Abortion1. Plant Cell, 24(3), 1034–1048. https://doi.org/10.1105/tpc.111.094383 (cites=100)
46、Zhang, H., Wu, K., Wang, Y., Peng, Y., Hu, F., Wen, L., Han, B., Qian, Q., & Teng, S. (2012). A WUSCHEL-like homeobox gene, OsWOX3B responses to NUDA/GL-1 locus in rice. Rice, 5(1), 1–10. https://doi.org/10.1186/1939-8433-5-30 (cites=12)
47、The Tomato Genome Consortium. (2012). The tomato genome sequence provides insights into fleshy fruit evolution. Nature, 485(7400), 635–641. https://doi.org/10.1038/nature11119 (cites=1544)
48、Wang, L., Wang, A., Huang, X., Zhao, Q., Dong, G., Qian, Q., Sang, T., & Han, B*. (2011). Mapping 49 quantitative trait loci at high resolution through sequencing-based genotyping of rice recombinant inbred lines. Theoretical and Applied Genetics, 122(2), 327–340. https://doi.org/10.1007/s00122-010-1449-8 (cites=69)
49、Zhu, B. F., Si, L., Wang, Z., Zhou, Y., Zhu, J., Shangguan, Y., Lu, D., Fan, D., Li, C., Lin, H., Qian, Q., Sang, T., Zhou, B., Minobe, Y., & Han, B*. (2011). Genetic control of a transition from black to straw-white seed hull in rice domestication. Plant Physiology, 155(3), 1301–1311. https://doi.org/10.1104/pp.110.168500 (cites=71)
50、Gao, Z., Zeng, D., Cheng, F., Tian, Z., Guo, L., Su, Y., Yan, M., Jiang, H., Dong, G., Huang, Y., Han, B., Li, J., & Qian, Q. (2011). ALK, the Key Gene for Gelatinization Temperature, is a Modifier Gene for Gel Consistency in Rice. Journal of Integrative Plant Biology, 53(9), 756–765. https://doi.org/10.1111/j.1744-7909.2011.01065.x (cites=36)
51、Zhang, H., Zhao, Q., Sun, Z. Z., Zhang, C. Q., Feng, Q., Tang, S. Z., Liang, G. H., Gu, M. H., Han, B., & Liu, Q. Q. (2011). Development and high-throughput genotyping of substitution lines carring the chromosome segments of indica 9311 in the background of japonica Nipponbare. Journal of Genetics and Genomics, 38(12), 603–611. https://doi.org/10.1016/j.jgg.2011.11.004 (cites=26)
52、Huang, X., Wei, X., Sang, T., Zhao, Q., Feng, Q., Zhao, Y., Li, C., Zhu, C., Lu, T., Zhang, Z., Li, M., Fan, D., Guo, Y., Wang, A., Wang, L., Deng, L., Li, W., Lu, Y., Weng, Q., Liu, K., Huang, T., Zhou, T., Jing, Y., Li, W., Lin, Z., Buckler, E.S., Qian, Q., Zhang, Q., Li, J., Han, B*. (2010). Genome-wide association studies of 14 agronomic traits in rice landraces. Nature Genetics, 42(11), 961–967. https://doi.org/10.1038/ng.695 (cites=975)
53、Lu, T., Lu, G., Fan, D., Zhu, C., Li, W., Zhao, Q., Feng, Q., Zhao, Y., Guo, Y., Li, W., Huang, X., & Han, B*. (2010). Function annotation of the rice transcriptome at single-nucleotide resolution by RNA-seq. Genome Research, 20(9), 1238–1249. https://doi.org/10.1101/gr.106120.110 (cites=214)
54、Peng, Z., Lu, T., Li, L., Liu, X., Gao, Z., Hu, T., Yang, X., Feng, Q., Guan, J., Weng, Q., Fan, D., Zhu, C., Lu, Y., Han, B*., & Jiang, Z*. (2010). Genome-wide characterization of the biggest grass, bamboo, based on 10,608 putative full-length cDNA sequences. BMC Plant Biology, 10. https://doi.org/10.1186/1471-2229-10-116 (cites=62)
55、Xu, J., Zhao, Q., Du, P., Xu, C., Wang, B., Feng, Q., Liu, Q., Tang, S., Gu, M., Han, B*., & Liang, G*. (2010). Developing high throughput genotyped chromosome segment substitution lines based on population whole-genome re-sequencing in rice (Oryza sativa L.). BMC Genomics, 11(1), 656. https://doi.org/10.1186/1471-2164-11-656 (cites=52)
56、Zhao, Q., Huang, X., Lin, Z., & Han, B*. (2010). SEG-Map: A novel software for genotype calling and genetic map construction from next-generation sequencing. Rice, 3(2–3), 98–102. https://doi.org/10.1007/s12284-010-9051-x (cites=18)
57、Xie, W., Feng, Q., Yu, H., Huang, X., Zhao, Q., Xing, Y., Yu, S., Han, B., & Zhang, Q. (2010). Parent-independent genotyping for constructing an ultrahigh-density linkage map based on population sequencing. Proc Natl Acad Sci of USA, 107(23), 10578–10583. https://doi.org/10.1073/pnas.1005931107 (cites=167)
58、Dai, L., Wu, J., Li, X., Wang, X., Liu, X., Jantasuriyarat, C., Kudrna, D., Yu, Y., Wing, R. A., Han, B., Zhou, B., & Wang, G. L. (2010). Genomic structure and evolution of the Pi2/9 locus in wild rice species. Theoretical and Applied Genetics, 121(2), 295–309. https://doi.org/10.1007/s00122-010-1310-0 (cites=17)
59、Delseny, M., Han, B., & Hsing, Y. I. (2010). High throughput DNA sequencing: The new sequencing revolution. Plant Science, 179(5), 407–422. https://doi.org/10.1016/j.plantsci.2010.07.019 (cites=46)
60、Feng, Q., Huang, T., Zhao, Q., Zhu, J., Lin, Z., & Han, B*. (2009). Analysis of collinear regions of Oryza AA and CC genomes. Journal of Genetics and Genomics, 36(11), 667–677. https://doi.org/10.1016/S1673-8527(08)60159-9 (cites=6)
61、Gao, C., & Han, B*. (2009). Evolutionary and expression study of the aldehyde dehydrogenase (ALDH) gene superfamily in rice (Oryza sativa). Gene, 431(1–2), 86–94. https://doi.org/10.1016/j.gene.2008.11.010 (cites=42)
62、Hu, W., Hu, G., & Han, B*. (2009). Genome-wide survey and expression profiling of heat shock proteins and heat shock factors revealed overlapped and stress specific response under abiotic stresses in rice. Plant Science, 176(4), 583–590. https://doi.org/10.1016/j.plantsci.2009.01.016 (cites=139)
63、Huang, X., Feng, Q., Qian, Q., Zhao, Q., Wang, L., Wang, A., Guan, J., Fan, D., Weng, Q., Huang, T., Dong, G., Sang, T., & Han, B*. (2009). High-throughput genotyping by whole-genome resequencing. Genome Research, 19(6), 1068–1076. https://doi.org/10.1101/gr.089516.108 (cites=421)
64、Gao, Z., Qian, Q*., Liu, X., Yan, M., Feng, Q., Dong, G., Liu, J., & Han, B*. (2009). Dwarf 88, a novel putative esterase gene affecting architecture of rice plant. Plant Molecular Biology, 71(3), 265–276. https://doi.org/10.1007/s11103-009-9522-x (cites=105)
65、Liu, Xiling, & Han, B*. (2009). Evolutionary conservation of neighbouring gene pairs in plants. Gene, 437(1–2), 71–79. https://doi.org/10.1016/j.gene.2009.02.012 (cites=13)
66、Lu, G., Gao, C., Zheng, X., & Han, B*. (2009). Identification of OsbZIP72 as a positive regulator of ABA response and drought tolerance in rice. Planta, 229(3), 605–615. https://doi.org/10.1007/s00425-008-0857-3 (cites=163)
67、Zheng, X., Chen, B., Lu, G., & Han, B*. (2009). Overexpression of a NAC transcription factor enhances rice drought and salt tolerance. Biochemical and Biophysical Research Communications, 379(4), 985–989. https://doi.org/10.1016/j.bbrc.2008.12.163 (cites=228)
68、Du, B., Zhang, W., Liu, B., Hu, J., Wei, Z., Shi, Z., He, R., Zhu, L., Chen, R., Han, B., & He, G. (2009). Identification and characterization of Bph14, a gene conferring resistance to brown planthopper in rice. Proc Natl Acad Sci of USA, 106(52), 22163–22168. https://doi.org/10.1073/pnas.0912139106 (cites=234)
69、Li, W., Wang, B., Wu, J., Lu, G., Hu, Y., Zhang, X., Zhang, Z., Zhao, Q., Feng, Q., Zhang, H., Wang, Z., Wang, G. L., Han, B., Wang, Z., & Zhou, B. (2009). The Magnaporthe oryzae Avirulence Gene AvrPiz-t encodes a predicted secreted protein that triggers the immunity in rice mediated by the blast resistance gene Piz-t. Molecular Plant-Microbe Interactions, 22(4), 411–420. https://doi.org/10.1094/MPMI-22-4-0411 (cites=116)
70、Huang, X., Lu, G., Zhao, Q., Liu, X., & Han, B*. (2008). Genome-wide analysis of transposon insertion polymorphisms reveals intraspecific variation in cultivated rice. Plant Physiology, 148(1), 25–40. https://doi.org/10.1104/pp.108.121491 (cites=63)
71、Lu, T., Huang, X., Zhu, C., Huang, T., Zhao, Q., Xie, K., Xiong, L., Zhang, Q., & Han, B*. (2008). RICD: A rice indica cDNA database resource for rice functional genomics. BMC Plant Biology, 8, 1–5. https://doi.org/10.1186/1471-2229-8-118 (cites=12)
72、Lu, T., Huang, X., Zhu, C., Huang, T., Zhao, Q., Xie, K., Xiong, L., Zhang, Q., Han, B*. (2008). Collection and comparative analysis of 1888 Full-length cDNAs from Wild Rice Oryza rufipogon Griff. W1943. DNA Research, 15(5), 285–295. https://doi.org/10.1093/dnares/dsn018 (cites=27)
73、Han, B*., & Zhang, Q*. (2008). Rice Genome Research: Current Status and Future Perspectives. The Plant Genome, 1(2), 71–76. https://doi.org/10.3835/plantgenome2008.09.0008 (cites=4)
74、Fang, J., Chai, C., Qian, Q., Li, C., Tang, J., Sun, L., Huang, Z., Guo, X., Sun, C., Liu, M., Zhang, Y., Lu, Q., Wang, Y., Lu, C., Han, B., Chen, F., Cheng, Z., & Chu, C. (2008). Mutations of genes in synthesis of the carotenoid precursors of ABA lead to pre-harvest sprouting and photo-oxidation in rice. Plant Journal, 54(2), 177–189. https://doi.org/10.1111/j.1365-313X.2008.03411.x (cites=118)
75、Yu, Y., Tang, T., Qian, Wang, Y., Yan, M., Zeng, D., Han, B., Wu, C. I., Shi, S., & Li, J. (2008). Independent Losses of Function in a Polyphenol Oxidase in Rice: Differentiation in Grain Discoloration between Subspecies and the Role of Positive Selection under Domestication. Plant Cell, 20(11), 2946–2959. https://doi.org/10.1105/tpc.108.060426 (cites=48)
76、The Rice Annotation Project Consortium.(2008). The Rice Annotation Project Database (RAP-DB): 2008 update. Nucleic Acids Res, 36, 1028–1033. https://doi.org/10.1093/nar/gkm978 (cites=231)
77、Zhang, Q., Li, J., Xue, Y., Han, B., & Deng, X. W. (2008). Rice 2020: A call for an international coordinated effort in rice functional genomics. Molecular Plant, 1(5), 715–719. https://doi.org/10.1093/mp/ssn043 (cites=76)
78、Fang, J., Chai, C., Qian, Q., Li, C., Tang, J., Sun, L., Huang, Z., Guo, X., Sun, C., Liu, M., Zhang, Y., Lu, Q., Wang, Y., Lu, C., Han, B., Chen, F., Cheng, Z., & Chu, C. (2008). Mutations of genes in synthesis of the carotenoid precursors of ABA lead to pre-harvest sprouting and photo-oxidation in rice. Plant Journal, 54(2), 177–189. https://doi.org/10.1111/j.1365-313X.2008.03411.x (cites=118)
79、Han, B*., Xue, Y., Li, J., Deng, X. W., & Zhang, Q. (2007). Rice functional genomics research in China. Philosophical Transactions of the Royal Society B: Biological Sciences, 362(1482), 1009–1021. https://doi.org/10.1098/rstb.2007.2030 (cites=16)
80、Liu, X., Lu, T., Yu, S., Li, Y., Huang, Y., Huang, T., Zhang, L., Zhu, J., Zhao, Q., Fan, D., Mu, J., Shangguan, Y., Feng, Q., Guan, J., Ying, K., Zhang, Y., Lin, Z., Sun, Z., Qian, Q., Lu, Y., Han B*. (2007). A collection of 10,096 indica rice full-length cDNAs reveals highly expressed sequence divergence between Oryza sativa indica and japonica subspecies. Plant Molecular Biology, 65(4), 403–415. https://doi.org/10.1007/s11103-007-9174-7 (cites=33)
81、Wang, D., Pei, K., Fu, Y., Sun, Z., Li, S., Liu, H., Tang, K., Han, B*., & Tao, Y*. (2007). Genome-wide analysis of the auxin response factors (ARF) gene family in rice (Oryza sativa). Gene, 394(1–2), 13–24. https://doi.org/10.1016/j.gene.2007.01.006 (cites=199)
82、Zhang, J., Guo, D., Chang, Y., You, C., Li, X., Dai, X., Weng, Q., Zhang, J., Chen, G., Li, X., Liu, H., Han, B., Zhang, Q., & Wu, C. (2007). Non-random distribution of T-DNA insertions at various levels of the genome hierarchy as revealed by analyzing 13,804 T-DNA flanking sequences from an enhancer-trap mutant library. Plant Journal, 49(5), 947–959. https://doi.org/10.1111/j.1365-313X.2006.03001.x (cites=74)
83、The Rice Annotation Project. (2007). Curated genome annotation of Oryza sativa ssp. japonica and comparative genome analysis with Arabidopsis thaliana: The Rice Annotation Project. Genome Research, 17(2), 175–183. https://doi.org/10.1101/gr.5509507 (cites=153)
84、Hu, H., Mu, J., Zhang, H. J., Tao, Y. Z., & Han, B*. (2006). Differentiation of a Miniature Inverted Transposable Element (MITE) system in Asian rice cultivars and its inference for a diphyletic origin of two subspecies of Asian cultivated rice. Journal of Integrative Plant Biology, 48(3), 260–267. https://doi.org/10.1111/j.1744-7909.2006.00221.x (cites=6)
85、Lu, Y., Gao, C., Han, B*. (2006). Sequence analysis of mRNA polyadenlation signals of rice genes. Chinese Sciences Bulletin (Chinese), 51, 1069-1077https://engine.scichina.com/doi/10.1007/s11434-006-1069-5 (cites=7)
86、Bao, W., Zhang, W., Yang, Q., Zhang, Y., Han, B., Gu, M., Xue, Y., & Cheng, Z. (2006). Diversity of centromeric repeats in two closely related wild rice species, Oryza officinalis and Oryza rhizomatis. Molecular Genetics and Genomics, 275(5), 421–430. https://doi.org/10.1007/s00438-006-0103-2 (cites=22)
87、Fan, C., Xing, Y., Mao, H., Lu, T., Han, B., Xu, C., Li, X., & Zhang, Q. (2006). GS3, a major QTL for grain length and weight and minor QTL for grain width and thickness in rice, encodes a putative transmembrane protein. Theoretical and Applied Genetics, 112(6), 1164–1171. https://doi.org/10.1007/s00122-006-0218-1 (cites=659)
88、Lian, X., Wang, S., Zhang, J., Feng, Q., Zhang, L., Fan, D., Li, X., Yuan, D., Han, B., & Zhang, Q. (2006). Expression profiles of 10,422 genes at early stage of low nitrogen stress in rice assayed using a cDNA microarray. Plant Molecular Biology, 60(5), 617–631. https://doi.org/10.1007/s11103-005-5441-7 (cites=108)
89、Qu, S., Liu, G., Zhou, B., Bellizzi, M., Zeng, L., Dai, L., Han, B., & Wang, G. L. (2006). The broad-spectrum blast resistance gene Pi9 encodes a nucleotide-binding site-leucine-rich repeat protein and is a member of a multigene family in rice. Genetics, 172(3), 1901–1914. https://doi.org/10.1534/genetics.105.044891 (cites=321)
90、Jiao, Y., Jia, P., Wang, X., Su, N., Yu, S., Zhang, D., Ma, L., Feng, Q., Jin, Z., Li, L., Xue, Y., Cheng, Z., Zhao, H., Han, B*., & Deng, X. W*. (2005). A tiling microarray expression analysis of rice chromosome 4 suggests a chromosome-level regulation of transcription. Plant Cell, 17(6), 1641–1657. https://doi.org/10.1105/tpc.105.031575 (cites=43)
91、Lu, Y., Wu, Y. R., & Han, B*. (2005). Anaerobic induction of isocitrate lyase and malate synthase in submerged rice seedlings indicates the important metabolic role of the glyoxylate cycle. Acta Biochimica et Biophysica Sinica, 37(6), 406–414. https://doi.org/10.1111/j.1745-7270.2005.00060.x (cites=18)
92、Zhang, Y., Wu, Y., Liu, Y., Han, B*. (2005). Computational identification of 69 retroposons in Arabidopsis. Plant Physiology, 138(2), 935–948. https://doi.org/10.1104/pp.105.060244 (cites=43)
93、Lan, L., Li, M., Lai, Y., Xu, W., Kong, Z., Ying, K., Han, B., & Xue, Y. (2005). Microarray analysis reveals similarities and variations in genetic programs controlling pollination/fertilization and stress responses in rice (Oryza sativa L.). Plant Molecular Biology, 59(1), 151–164. https://doi.org/10.1007/s11103-005-3958-4 (cites=52)
94、International Rice Genome Sequencing Project. (2005). The map-based sequence of the rice genome. Nature, 436(7052), 793–800. https://doi.org/10.1038/nature03895 (cites=2255)
95、Wing, R. A., Ammiraju, J. S. S., Luo, M., Kim, H. R., Yu, Y., Kudrna, D., Goicoechea, J. L., Wang, W., Nelson, W., Rao, K., Brar, D., Mackill, D. J., Han, B., Soderlund, C., Stein, L., SanMiguel, P., & Jackson, S. (2005). The Oryza map alignment project: The golden path to unlocking the genetic potential of wild rice species. Plant Molecular Biology, 59(1), 53–62. https://doi.org/10.1007/s11103-004-6237-x (cites=96)
96、Zhang, D., Yang, Q., Bao, W., Zhang, Y., Han, B., Xue, Y., & Cheng, Z. (2005). Molecular cytogenetic characterization of the Antirrhinum majus genome. Genetics, 169(1), 325–335. https://doi.org/10.1534/genetics.104.031146 (cites=30)
97、Zhang, J., Feng, Q., Jin, C., Qiu, D., Zhang, L., Xie, K., Yuan, D., Han, B., Zhang, Q., & Wang, S. (2005). Features of the expressed sequences revealed by a large-scale analysis of ESTs from a normalized cDNA library of the elite indica rice cultivar Minghui 63. Plant Journal, 42(5), 772–780. https://doi.org/10.1111/j.1365-313X.2005.02408.x (cites=34)
98、Xie, K., Zhang, J., Xiang, Y., Feng, Q., Han, B., Chu, Z., Wang, S., Zhang, Q., & Xiong, L. (2005). Isolation and annotation of 10828 putative full length cDNAs from indica rice. Science in China, Series C: Life Sciences, 48(5), 445–451. https://doi.org/10.1360/062004-90 (cites=13)
99、Li, C., Zhang, Y., Ying, K., Liang, X., & Han, B*. (2004). Sequence variations of simple sequence repeats on chromosome-4 in two subspecies of the Asian cultivated rice. Theoretical and Applied Genetics, 108(3), 392–400. https://doi.org/10.1007/s00122-003-1457-z (cites=13)
100、Li, T., & Han, B*. (2004). Dampable waves along nucleic acid sequences mediating nucleotides’ interactions. DNA Sequence - Journal of DNA Sequencing and Mapping, 15(2), 135–139. https://doi.org/10.1080/10425170410001683476 (cites=153)
101、Liu, Xiaohui, Wang, H., Li, Y., Tang, Y., Liu, Y., Hu, X., Jia, P., Ying, K., Feng, Q., Guan, J., Jin, C., Zhang, L., Lou, L., Zhou, Z., & Han, B*. (2004). Preparation of single rice chromosome for construction of a DNA library using a laser microbeam trap. Journal of Biotechnology, 109(3), 217–226. https://doi.org/10.1016/j.jbiotec.2003.12.012 (cites=16)
102、Wang, R., Hong, G., & Han, B*. (2004). Transcript abundance of rml1, encoding a putative GT1-like factor in rice, is up-regulated by Magnaporthe grisea and down-regulated by light. Gene, 324(1–2), 105–115. https://doi.org/10.1016/j.gene.2003.09.008 (cites=19)
103、Zhang, Yu, Huang, Y., Zhang, L., Li, Y., Lu, T., Lu, Y., Feng, Q., Zhao, Q., Cheng, Z., Xue, Y., Wing, R. A., & Han, B*. (2004). Structural features of the rice chromosome 4 centromere. Nucleic Acids Research, 32(6), 2023–2030. https://doi.org/10.1093/nar/gkh521 (cites=46)
104、Lan, L., Chen, W., Lai, Y., Suo, J., Kong, Z., Li, C., Lu, Y., Zhang, Y., Zhao, X., Zhang, X., Zhang, Y., Han, B., Cheng, J., & Xue, Y. (2004). Monitoring of gene expression profiles and isolation of candidate genes involved in pollination and fertilization in rice (Oryza sativa L.) with a 10K cDNA microarray. Plant Molecular Biology, 54(4), 471–487. https://doi.org/10.1023/B:PLAN.0000038254.58491.c7 (cites=57)
105、Han, B*., & Xue, Y. (2003). Genome-wide intraspecific DNA-sequence variations in rice. Current Opinion in Plant Biology, 6(2), 134–138. https://doi.org/10.1016/S1369-5266(03)00004-9 (cites=74)
106、Wang, R., Hong, G., Han, B*. (2003) Characterization of the copy number of RIRE 10 retrotransposon and transcriptional activity of its LTR in rice genome. Acta Bioch Bioph Sin. (Chinese), 135, 768-773.http://www.abbs.org.cn/arts.asp?id=3626 (cites=3)
107、Li, X., Fu, Z., Wang, Y., Xiong, G., Wang, X., Liu, X., Li, J., Qian, Q., Zeng, D., Teng, S., Hiroshi, F., Yuan, M., Luo, D., Han, B., & Li, J. (2003). Control of tillering in rice. Nature, 422(6932), 618–621. https://doi.org/10.1038/nature01518 (cites=565)
108、Zhou, J., Wang, F., Ma, W., Zhang, Y., Han, B., & Xue, Y. (2003). Structural and transcriptional analysis of S-locus F-box genes in Antirrhinum. Sexual Plant Reproduction, 16(4), 165–177. https://doi.org/10.1007/s00497-003-0185-5 (cites=54)
109、Li, Y., Qian, Q., Zhou, Y., Yan, M., Sun, L., Zhang, M., Fu, Z., Wang, Y., Han, B., Pang, X., Chen, M., & Li, J. (2003). Brittle culm1,Which Encodes a COBRA-Like Protein, Affects the Mechanical Properties of Rice Plants. The Plant Cell, 15(September), 2020–2031. https://doi.org/10.1105/tpc.011775.chanical (cites=236)
110、Feng, Q., Zhang, Y., Hao, P., Wang, S., Fu, G., Huang, Y., Li, Y., Zhu, J., Liu, Y., Hu, X., Jia, P., Zhang, Y., Zhao, Q., Ying, K., Yu, S., Tang, Y., Weng, Q., Zhang, L., Lu, Y., Mu, J., Lu, Y., Zhang, L.S., Yu, Z., Fan, D., Liu, X., Lu, T., Li, C., Wu, Y., Sun, T., Lei, H., Li, T., Hu, H., Guan, J., Wu, M., Zhang, R., Zhou, B., Chen, Z., Chen, L., Jin, Z., Wang, R., Yin, H., Cai, Z., Ren, S., Lv, G., Gu, W., Zhu, G., Tu, Y., Jia, J., Zhang, Y., Chen, J., Kang, H., Chen, X., Shao, C., Sun, Y., Hu, Q., Zhang, X., Zhang, W., Wang, L., Ding, C., Sheng, H., Gu, J., Chen, S., Ni, L., Zhu, F., Chen, W., Lan, L., Lai, Y., Cheng, Z., Gu, M., Jiang, J., Li, J., Hong, G., Xue, Y., Han, B*. (2002). Sequence and analysis of rice chromosome 4.Nature 420, 316–320. https://doi.org/10.1038/nature01183 (cites=365)
111、Zhao, Q., Zhang, Y., Cheng, Z., Chen, M., Wang, S., Feng, Q., Huang, Y., Li, Y., Tang, Y., Zhou, B., Chen, Z., Yu, S., Zhu, J., Hu, X., Mu, J., Ying, K., Hao, P., Zhang, L., Lu, Y., Zhang, L.S., Liu, Y., Yu, Z., Fan, D., Weng, Q., Chen, L., Lu, T., Liu, X., Jia, P., Sun, T., Wu, Y., Zhang, Y., Lu, Y., Li, C., Wang, R., Lei, H., Li, T., Hu, H., Wu, M., Zhang, R., Guan, J., Zhu, J., Fu, G., Gu, M., Hong, G., Xue, Y., Wing, R., Jiang, J., Han, B*. (2002). A fine physical map of the rice chromosome 4. Genome Research, 12(5), 817–823. https://doi.org/10.1101/gr.48902 (cites=54)
112、Lei, H., Zhou, B., Zhang, Y., Hong, G., Han, B*. (2002) Structural analysis of a gene cluster encoding DFR-like proteins from rice chromosome 4. Acta Bioch Bioph Sin. 34, 685-689.
113、Lei, H., Zhou, B., Hong, G., Han, B*. (2002) Characterization of a S-locus-related receptor-like kinase cluster on rice chromosome 4. Acta Bot Sin. 44, 1346-1350.
114、Hu, H., Li, T., Mu, J., Han, B*., Hong, G. (2002) A high efficient approach used for BAC-contig extension of Oryza sativa with PCR screening the BAC clone pools. Acta Bioch Bioph Sin. 34, 358-364.
115、Lai, Z., Ma, W., Han, B., Liang, L., Zhang, Y., Hong, G., & Xue, Y. (2002). An F-box gene linked to the self-incompatibility (S) locus of Antirrhinum is expressed specifically in pollen and tapetum. Plant Molecular Biology, 50(1), 29–41. https://doi.org/10.1023/A:1016050018779 (cites=236)
116、Han, B., Pain, A., & Johnstone, K. (1997). Spontaneous duplication of a 661 bp element within a two-component sensor regulator gene causes phenotypic switching in colonies of Pseudomonas tolaasii, cause of brown blotch disease of mushrooms. Molecular Microbiology, 25(2), 211–218. https://doi.org/10.1046/j.1365-2958.1997.4411811.x (cites=32)